إعـــــــلان

تقليص
لا يوجد إعلان حتى الآن.

مفـهـوم: الكسور العشرية والعمليات عليها

تقليص
X
 
  • تصفية - فلترة
  • الوقت
  • عرض
إلغاء تحديد الكل
مشاركات جديدة

  • مفـهـوم: الكسور العشرية والعمليات عليها




    بســم الله الرحمــن الرحيــم

    المفاهيم العلمية: اختبار القدرات العامة - الجزء الكمي

    مفـهـوم: الكسور العشرية والعمليات عليها




    هنا بعض المفاهيم الأساسية المهمة المتعلقة بالكسور العشرية التي هي شكل آخر للكسور الاعتيادية التي درسناها سابقاً.

    سنتذكر معاً كيفية تحويل الكسور الاعتيادية إلى كسور عشرية وكيفية تمثيلها, وما العمليات التي يمكن أن نجريها عليها.


    - ما الكسر العشري؟
    - كيف نجمع الكسور العشرية؟
    - كيف نطرح الكسور العشرية؟
    - كيف نضرب الكسور العشرية؟
    - كيف نقسم الكسور العشرية؟






    المصدر: مركز قياس
    elearning qiyas

    التعديل الأخير تم بواسطة أ.رحاب; الساعة 03-29-2016, 08:51 PM.

    سبحان الله وبحمدهـ سبحان الله العظيم

    http://quran.ksu.edu.sa/



  • #2
    مثال من الواقع.


    . مثال من الواقع .





    وقف سعيد إلى جانب الطريق منتظراً سيارة أجرة, وأثناء وقوفه لاحظ ظله وبجانبه ظل لعمود كهرباء كان يقف بجانبه.

    فكر سعد كيف لي أن أحسب ارتفاع العمود من طول ظله؟




    يعلم سعد أن طوله يساوي 1.8 من المتر, وقدر أن طول ظله يبلغ تقريباً 1.2 من المتر,

    من خلال مربعات الرصيف التي طول ضلعها 0.5 من المتر, و قدر أيضاً بأن طول ظل عمود الكهرباء يبلغ 9.6 من المتر.




    ومن ثم أجرى عملياته الحسابية فوجد أن طول العمود يساوي 14.4 من المتر.

    كيف توصل سعد لهذه النتيجة؟




    سبحان الله وبحمدهـ سبحان الله العظيم

    http://quran.ksu.edu.sa/


    تعليق


    • #3
      رموز ومصطلحات.


      . مفاهيم الكسور العشرية .



      * الكسر العشري.
      لكل كسر اعتيادي كسر عشري مساوٍ له, وقد يحوي الكسر العشري منازل هي أجزاء من عشرة أو مئة أو ألف أو أكثر, ونحصل عليه بقسمة البسط على المقام.

      فمثلاً:



      ملاحظة هامة: لنتذكر دائماً أن الكسور العشرية هي نوعان: كسور منتهية وغير منتهية (دورية).

      - كسور عشرية منتهية مثل:


      - كسور عشرية غير منتهية (دورية) مثل:






      * جمع الكسور العشرية وطرحها.
      لجمع كسرين عشريين علينا أن نجمع الأعداد ابتداء من اليمين إلى أن نصل إلى الأعداد الصحيحة أولاً ثم نجمع الأجزاء المتماثلة معاً بعد ذلك.

      فمثلاً:

      12.01 + 2.35 = 14.36


      مثال آخر:
      0.734 - 0.578 = 0.156





      * ضرب الكسور العشرية.
      لضرب 0.04 × 0.3 علينا أن نحسب عدد المنازل إلى يمين الفاصلة (في هذه الحالة 3 منازل),
      ثم نقوم بضرب الأعداد بدون الفواصل العشرية 12 = 3 × 4 (يلاحظ أن الناتج مكون من منزلتين),
      بعدها نضع ناتج الضرب وإلى يساره صفر واحد 012
      ثم نضع الفاصلة العشرية فيكون الناتج 0.012

      فمثلاً:
      ما ناتج عملية الضرب الآتية:
      0.0002 × 0.009 × 0.02 = ؟

      الحل:
      نحدد أولاً عدد المنازل العشرية بعد الفاصلة في كل عدد ثم نجمعها (4+3+2=9)
      ثم نضرب الأعداد بدون فواصل ببعضها (2×9×2=36)
      نضع الناتج 36 وإلى يساره سبعة أصفار
      فيكون الجواب 0.000000036

      مثال آخر:
      ما ناتج عملية الضرب الآتية:
      0.42 × 10000 = ؟

      الحل:
      عند ضرب عدد عشري في قوى عشرة أو مضاعفاتها فإننا نحرك الفاصلة العشرية باتجاه اليمين بقدر عدد الأصفار الموجودة.
      إذاً في هذه الحالة نحرك الفاصلة العشرية 4 منازل إلى اليمين من العدد العشري.
      وبما أنه لدينا منزلتين فقط نضيف أصفاراً للمنزلتين الإضافيتين:
      10000 × 0.42 = 4200



      * قسمة الكسور العشرية.
      لقسمة كسرين عشريين 0.3 ÷ 0.05 علينا أن نضيف عدداً من الأصفار إلى اليمين حتى يتساوى عدد الأرقام التي يمين الفاصلة العشرية
      ثم نحذف الفواصل ونقسم العددين قسمة عادية كما يلي:


      مثال (1):

      ما ناتج عملية القسمة الآتية:
      4.2 ÷ 1.05 = ؟

      الحل:
      نضيف صفراً إلى اليمين العدد 2 ثم نقوم بعملية القسمة:


      مثال (2):
      ما ناتج عملية القسمة الآتية:
      4.2 ÷ 10000 = ؟

      الحل:
      عند قسمة عدد عشري على قوى العشرة أو مضاعفاتها فإننا نحرك الفاصلة العشرية باتجاه اليسار بقدر عدد الأصفار الموجودة.
      إذاً نضيف اربعة أصفار إلى يمين الفاصلة العشرية 0.42 ÷ 10000 = 0.000042



      * تقريب الكسور العشرية.
      تقرب الكسور العشرية مثل ما تقرب الأعداد الكلية حيث يضاف للمنزلة التالية إذا كان الرقم السابق للمنزلة المراد التقريب إليها 5 فأكثر,
      ويحذف إذا كان الرقم السابق للمنزلة المراد التقريب إليها أقل من 0.5

      فمثلاً:

      2.292 يساوي تقريباً 2.3 مقرباً إلى أقرب جزء من عشرة.
      ويساوي تقريباً 2.29 مقرباً إلى أقرب جزء من مئة.


      سبحان الله وبحمدهـ سبحان الله العظيم

      http://quran.ksu.edu.sa/


      تعليق


      • #4
        حل المسألة .


        لنشاهد الآن كيف توصل سعد إلى أن ارتفاع عمود الكهرباء يساوي 14.4 من المتر من خلال مجموعة المعطيات الموجودة لديه,
        واستخدم بعض المفاهيم التي ذكرناها.

        . حل المسألة .





        سبحان الله وبحمدهـ سبحان الله العظيم

        http://quran.ksu.edu.sa/


        تعليق


        • #5
          الخلاصة.


          . الخلاصة .
          لقد استذكرنا معاً مفاهيم الكسور العشرية,
          والعمليات الحسابية الأربع الاساسية عليها,
          وكيفية تقريب الكسور العشرية.


          سبحان الله وبحمدهـ سبحان الله العظيم

          http://quran.ksu.edu.sa/


          تعليق

          يعمل...
          X