http://test-q.com/up/do.php?img=6547

http://test-q.com/up/do.php?img=6548

http://test-q.com/up/do.php?img=6636

http://test-q.com/up/do.php?img=6546

http://test-q.com/up/do.php?img=6549

http://test-q.com/up/do.php?img=6551

http://test-q.com/up/do.php?img=6544

http://test-q.com/up/do.php?img=6543

http://test-q.com/up/do.php?img=6550

http://test-q.com/up/do.php?img=6555

http://test-q.com/up/do.php?img=6545

http://test-q.com/up/do.php?img=6557

http://test-q.com/up/do.php?img=6556

http://test-q.com/up/do.php?img=10716

http://test-q.com/up/do.php?img=10715

http://test-q.com/up/do.php?img=10714

http://test-q.com/up/do.php?img=6635

http://test-q.com/up/do.php?img=6633

http://test-q.com/up/do.php?img=6693

http://test-q.com/up/do.php?img=6632

http://test-q.com/up/do.php?img=6696

http://test-q.com/up/do.php?img=6634

http://test-q.com/up/do.php?img=6694

http://test-q.com/up/do.php?img=6695

http://test-q.com/up/do.php?img=6697

إضافة رد
 
أدوات الموضوع إبحث في الموضوع انواع عرض الموضوع
  #7  
قديم 09-09-2011, 12:28 PM
الصورة الرمزية B$D" 
			border="0" /></a></td>
			<td nowrap=
B$D B$D غير متواجد حالياً
عـضـو
 
تاريخ التسجيل: Feb 2011
الإقامة: abha
المشاركات: 302
بمعدل : 0.12 يومياً
شكراً: 623
تم شكره 180 مرة في 103 مشاركة
B$D will become famous soon enoughB$D will become famous soon enough
افتراضي

http://www.s00w.com/up/uploads/images/s00w-d181e9c60c.gif

http://test-q.com/up/uploads/test-q13465293701.gif

 

من 1 حتّى 20 = 20 عدد
20 / 2 = 10
>>> الطريقة سليمة ومجربّة في أكثر من مثآل
اذا طلب
اقتباس:
الفرق بين مجموع الأعداد الزوجية والأعداد الفردية من 1إلى 20

http://test-q.com/up/uploads/test-q13371128201.gif

رد مع اقتباس
2 أعضاء قالوا شكراً لـ B$D على المشاركة المفيدة:
ثقتي تعلو بربي (09-09-2011), siddigss (09-12-2011)
  #8  
قديم 09-09-2011, 07:20 PM
Mr.gehltoon Mr.gehltoon غير متواجد حالياً
مــــشــــــرف سابق
 
تاريخ التسجيل: Jul 2011
الإقامة: الآحسسـآآء - المنطقة الشرقيية
المشاركات: 1,017
بمعدل : 0.43 يومياً
شكراً: 144
تم شكره 871 مرة في 529 مشاركة
Mr.gehltoon will become famous soon enough
افتراضي

http://www.s00w.com/up/uploads/images/s00w-d181e9c60c.gif

http://test-q.com/up/uploads/test-q13465293701.gif

 

اقتباس:
المشاركة الأصلية كتبت بواسطة b$d مشاهدة المشاركة
من 1 حتّى 20 = 20 عدد
20 / 2 = 10
>>> الطريقة سليمة ومجربّة في أكثر من مثآل
اذا طلب
طريقة سريعة وسليمة .. شكراً لك هالمعلومة .

http://test-q.com/up/uploads/test-q13371128201.gif


التعديل الأخير تم بواسطة Mr.gehltoon ; 09-09-2011 الساعة 07:36 PM
رد مع اقتباس
الأعضاء الذين قالوا شكراً لـ Mr.gehltoon على المشاركة المفيدة:
B$D (09-09-2011)
  #9  
قديم 09-11-2011, 10:53 PM
الصورة الرمزية fai9l al.wafi" 
			border="0" /></a></td>
			<td nowrap=
fai9l al.wafi fai9l al.wafi غير متواجد حالياً
المشرف العام
 
تاريخ التسجيل: Sep 2009
المشاركات: 22,463
بمعدل : 7.50 يومياً
شكراً: 6,675
تم شكره 4,238 مرة في 2,980 مشاركة
fai9l al.wafi has a spectacular aura aboutfai9l al.wafi has a spectacular aura aboutfai9l al.wafi has a spectacular aura about

اوسمتي

 
افتراضي

http://www.s00w.com/up/uploads/images/s00w-d181e9c60c.gif

http://test-q.com/up/uploads/test-q13465293701.gif

 

اقتباس:
المشاركة الأصلية كتبت بواسطة b$d مشاهدة المشاركة
من 1 حتّى 20 = 20 عدد
20 / 2 = 10
>>> الطريقة سليمة ومجربّة في أكثر من مثآل
اذا طلب
أشكرك جدا...

معلومه رائعه

الله لا يحرمك الأجر

http://test-q.com/up/uploads/test-q13371128201.gif

__________________
للتسجيل في دورات القدرات
للاستاذ فهد البابطين
WWW.FAHAD1.COM
رد مع اقتباس
2 أعضاء قالوا شكراً لـ fai9l al.wafi على المشاركة المفيدة:
B$D (09-12-2011), siddigss (09-12-2011)
  #10  
قديم 09-12-2011, 04:17 PM
الصورة الرمزية siddigss" 
			border="0" /></a></td>
			<td nowrap=
siddigss siddigss غير متواجد حالياً
مشرف
 
تاريخ التسجيل: Dec 2010
الإقامة: Al-Riyadh
المشاركات: 2,560
بمعدل : 1.00 يومياً
شكراً: 1,525
تم شكره 805 مرة في 505 مشاركة
siddigss is a jewel in the roughsiddigss is a jewel in the roughsiddigss is a jewel in the rough
افتراضي

http://www.s00w.com/up/uploads/images/s00w-d181e9c60c.gif

http://test-q.com/up/uploads/test-q13465293701.gif

 

اقتباس:
المشاركة الأصلية كتبت بواسطة b$d مشاهدة المشاركة
من 1 حتّى 20 = 20 عدد
20 / 2 = 10
>>> الطريقة سليمة ومجربّة في أكثر من مثآل
اذا طلب
السلام عليكم ورحمة الله وبركاته

شكراً أستاذ فيصل على السؤال

يبدو أنني تأخرت << دائماً كذه :123:



أخي : B$d
الطريقة سليمة

حاولت برهنتها ووجدت انها لا تصلح إلا إذا كان العدد الأخير زوجي



لكن يمكننا استنتاج طريقة لو كان آخر عدد فردي

وهي ليست صعبة

أطرح الاستنتاج بعد قليل

وفقكم الله
:)

http://test-q.com/up/uploads/test-q13371128201.gif

__________________
قال أبو عبيدة معمر بن المثنى : (( من أراد أن يأكل الخبز بالعلم فلتبك عليه البواكي ))
رد مع اقتباس
الأعضاء الذين قالوا شكراً لـ siddigss على المشاركة المفيدة:
B$D (09-12-2011)
  #11  
قديم 09-12-2011, 04:24 PM
الصورة الرمزية siddigss" 
			border="0" /></a></td>
			<td nowrap=
siddigss siddigss غير متواجد حالياً
مشرف
 
تاريخ التسجيل: Dec 2010
الإقامة: Al-Riyadh
المشاركات: 2,560
بمعدل : 1.00 يومياً
شكراً: 1,525
تم شكره 805 مرة في 505 مشاركة
siddigss is a jewel in the roughsiddigss is a jewel in the roughsiddigss is a jewel in the rough
افتراضي

http://www.s00w.com/up/uploads/images/s00w-d181e9c60c.gif

http://test-q.com/up/uploads/test-q13465293701.gif

 

لو طلب الفرق بين مجموع الأعداد الزوجية والفردية من 1 إلى عدد زوجي

فإننا نوجد نصف هذا العدد الزوجي مباشرة

الإثبات

المطلوب :

1 - 2 + 3 - 4 + 5 - ..... + 2 ك

حيث : 2 ك << عدد زوجي

المجموع الأول :

1 + 3 + 5 + 7 + ...... + ( 2 ك - 1 )

متسلسلة حسابية

لنفرض : جف << مجموع الأعداد الفردية

جف = ( عدد الحدود / 2 ) ( الحد الأول + الحد الأخير )

جف = ( ك / 2 ) ( 1 + ( 2 ك - 1 ) )

جف = ( ك / 2 )( 2 ك )

جف = ك ^ 2

لنفرض : جز << مجموع الأعداد الزوجية

جز = ( ك / 2 ) ( 2 + 2 ك )

جز = ك ( ك + 1 )


الآن : نوجد المطلوب :

جز - جف = ك ( ك + 1 ) - ك ^ 2

= ك ( ك + 1 - ك )

= ك


وهو المطلوب
حيث
ك عبارة عن نصف 2 ك


أخيراً نستنتج :

لو طلب الفرق بين مجموع الأعداد الزوجية والفردية من 1 إلى عدد زوجي

فإننا نوجد نصف هذا العدد الزوجي مباشرة


وفقكم الله
:)

http://test-q.com/up/uploads/test-q13371128201.gif

__________________
قال أبو عبيدة معمر بن المثنى : (( من أراد أن يأكل الخبز بالعلم فلتبك عليه البواكي ))

التعديل الأخير تم بواسطة siddigss ; 09-12-2011 الساعة 04:35 PM
رد مع اقتباس
الأعضاء الذين قالوا شكراً لـ siddigss على المشاركة المفيدة:
B$D (09-12-2011)
  #12  
قديم 09-12-2011, 04:31 PM
الصورة الرمزية siddigss" 
			border="0" /></a></td>
			<td nowrap=
siddigss siddigss غير متواجد حالياً
مشرف
 
تاريخ التسجيل: Dec 2010
الإقامة: Al-Riyadh
المشاركات: 2,560
بمعدل : 1.00 يومياً
شكراً: 1,525
تم شكره 805 مرة في 505 مشاركة
siddigss is a jewel in the roughsiddigss is a jewel in the roughsiddigss is a jewel in the rough
افتراضي

http://www.s00w.com/up/uploads/images/s00w-d181e9c60c.gif

http://test-q.com/up/uploads/test-q13465293701.gif

 

ثانياً:

لو طلب الفرق بين الأعداد الفردية الزوجية بحيث كان العدد الأخير فردي

أي عدد فردي

لابد أن يكتب على الشكل 2 ك + 1


المطلوب

إيجاد المجموع التالي

1 - 2 + 3 - 4 + 5 - ...... - ( 2 ك ) + ( 2 ك + 1 )

أولاً :

لدينا

جف = 1 + 3 + 5 +...... + ( 2 ك + 1 )

لاحظ أن عدد الأعداد الفردية = ك + 1

جف = [ ( ك + 1 ) / 2 ] ( 1 + ( 2 ك + 1 ) )

جف = [ ( ك + 1 ) / 2 ] ( 2 ك + 2 )

جف = ( ك +1 ) ^ 2


جز = 2 + 4 + 6 + 8 + .....+ 2 ك

عدد الأعداد الزوجية = ك

جز = ( ك / 2 ) ( 2 +2 ك )

جز = ك ( ك + 1 )


أخيراً :

جف - جز = [ ( ك + 1 ) ^ 2 ] - ك ( ك + 1 )

جف - جز = ( ك + 1 ) ( ك + 1 - ك )

جف - جز = ( ك + 1 )


ونستنتج

إذا طلب الفرق بين مجموع الأعداد الفردية والزوجية من 1 إلى عدد فردي

فإننا نضيف واحد إلى آخر عدد - العدد الفردي - ثم نقسمه على 2


وفقكم الله
:) :)

http://test-q.com/up/uploads/test-q13371128201.gif

__________________
قال أبو عبيدة معمر بن المثنى : (( من أراد أن يأكل الخبز بالعلم فلتبك عليه البواكي ))

التعديل الأخير تم بواسطة siddigss ; 09-12-2011 الساعة 04:37 PM
رد مع اقتباس
الأعضاء الذين قالوا شكراً لـ siddigss على المشاركة المفيدة:
B$D (09-12-2011)
إضافة رد

مواقع النشر


يتصفح الموضوع حالياً : 3 (0 عضو و 3 زائر)
 
أدوات الموضوع إبحث في الموضوع
إبحث في الموضوع:

البحث المتقدم
انواع عرض الموضوع

ضوابط المشاركة
لا تستطيع إضافة مواضيع جديدة
لا تستطيع الرد على المواضيع
لا تستطيع إرفاق ملفات
لا تستطيع تعديل مشاركاتك

BB code متاحة
كود [IMG] متاحة
كود HTML معطلة

الانتقال السريع


الساعة الآن 05:24 PM

tracking statistics


RSS | RSS2 | XML | MAP | HTML


Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2017, vBulletin Solutions, Inc. test-q.com

منتديات اختبارات القدرات والتحصيل بتصريح رقم : م ن / 208 / 1433

 

جميع ما ينشر في المنتدى لا يعبر بالضرورة عن رأي صاحب الموقع وإنما يعبر عن وجهة نظر كاتبه

Security team

SEO 1.0 BY: ! Ala7laAm4.com ! © 2010
تطوير وارشفة الاحلام ديزاين